Main partner:

Perché uomini e macchine dovrebbero collaborare

Secondo il Chief Strategy Officer di Adform, l’intelligenza artificiale e l’intelligenza umana hanno entrambi i loro punti di forza, e devono giocare la partita come alleati e non nemici

di Jochen Schlosser, Chief Strategy Officer Adform
17 maggio 2019
jochen_schlosser_adform
Jochen Schlosser

Dal poker agli scacchi, l’intelligenza artificiale (AI) si sfida contro avversari umani in giochi sempre più complessi con lo scopo di capire se è in grado di superare l’uomo.

I risultati di tali prove portano spesso a discussioni interessanti. Ad esempio: perché l’Intelligenza Artificiale riesce a battere i migliori giocatori del mondo di Go, un antico gioco da tavolo cinese noto per l’immensa complessità, ma allo stesso tempo ha difficoltà a sconfiggere giocatori umani in Dota 2, un videogioco replicante un’arena di battaglia con molta meno credibilità intellettuale?

La risposta è che nonostante l’eccezionale potenza dell’Intelligenza Artificiale, questa non è adatta a risolvere ogni problema (almeno non ancora), se paragonata alle decisioni che l’uomo può prendere in aree strategiche dove serve una “conoscenza” diversa. Questo è vero sia negli ambienti accademici sia per quanto riguarda il contributo che questa tecnologia fornisce alla pubblicità digitale. Nel migliore dei casi, c’è una chiara definizione di successo, un campo di gioco noto e una sovrabbondanza di dati da cui imparare.

Un altro esempio è costituito dai software di traduzione. Anche se l’obiettivo di ottenere una “traduzione accettabile” non è perfettamente allineato all’AI, si è potuto riscontrare negli ultimi anni un enorme miglioramento dei sistemi basati sul questa tecnologia. In origine, gli esperti hanno cercato di insegnare ai sistemi di traduzione regole su sintassi e semantica cercando di coprire tutti i dettagli fondamentali della lingua basandosi su regole, ma ottenendo scarsi risultati. Le lingue contengono diverse variabili, dialetti, semantica e definizioni, è chiaro che un approccio basato sulle regole non avrebbe mai funzionato. Poi sono entrati in gioco software come Google Translate che fanno leva sul deep learning – un sottoinsieme dell’intelligenza artificiale – basandosi su enormi set di dati da cui imparare per raggiungere il livello di qualità attuale, grazie all’apprendimento autonomo su scala.

Lo stesso principio si applica al digital advertising, in cui l’Intelligenza Artificiale determina il cost-per-acquisition (CPA) ideale in base alla probabilità di conversione. Ci sono migliaia di punti di contatto che influenzano il customer journey, che possono essere combinati in innumerevoli sequenze, ma l’AI ha la possibilità di imparare da miliardi di segnali per prevedere la probabilità di conversione e generare la giusta offerta in tempo reale. Gli esseri umani non potrebbero mai costruire regole simili per ottenere gli stessi risultati. Per non parlare dell’aggiornamento e della rimodellazione delle regole di business che spesso tengono conto della gamma di variabili e delle condizioni in rapida evoluzione che definiscono l’ecosistema digitale.

L’eccezionale talento dell’Intelligenza Artificiale per l’apprendimento in un ambiente strutturato spiega perché sia in grado di giocare a Go a un livello mai visto prima. All’interno dei ristretti parametri del gioco, le macchine possono analizzare un numero maggiore di mosse possibili rispetto agli esseri umani, combinando simulazioni e deep learning. Basti pensare alla partita tra Lee Sedol e AlphaGo dove il computer ha vinto. Non è stata la vittoria ad essere interessante, ma la 37esima mossa della macchina (una mossa che un essere umano non avrebbe fatto) che si è rivelata fondamentale per battere Sedol. La capacità del computer di imparare e di allenarsi giocando milioni di partite contro se stesso, lo pone non uno, ma molti passi avanti rispetto all’avversario umano. Queste azioni sono quelle che impareremo ad accettare, specialmente per il mondo del digital adverting se vogliamo rimanere leader nella nostra partita. A volte, in scenari con obiettivi pubblicitari chiari e ben definiti, la macchina sa di più.

Quindi perché i computer, con tutta questa potenza, perdono ancora a Dota 2? Nonostante questo gioco online multiplayer sembra essere molto meno intellettuale di Go, in realtà è più difficile per una macchina. I giocatori hanno poche informazioni all’inizio, necessitano di esplorare e scoprire dove e chi sono gli avversari. Hanno bisogno di comportamenti tradizionalmente umani: istinto, analisi dell’atteggiamento degli altri giocatori, capacità di muoversi in ambienti incerti, riconoscere comportamenti umani come il bluff, o illogici e fuorvianti, che le macchine ancora non conoscono.

Sebbene i computer stiano facendo grandi progressi in Dota 2, questo continua ad essere un ambiente in cui è l’uomo ad essere predominante e in cui il valore dell’intelligenza umana è fondamentale. In una situazione in cui c’è una conoscenza incompleta o una mancanza di dati, dove il bene e il male non sono immediatamente evidenti, dove è richiesta una vera creatività, o dove lo spazio è troppo ampio, l’intelligenza artificiale richiede più tempo per imparare e il processo decisionale umano è ancora superiore. Nel complesso, ci sarà un lungo periodo di coesistenza, l’AI è sorprendente, ma siamo ancora lontani da una tecnologia capace di comportarsi pienamente come un essere umano.

Questo non significa che gli uomini dovrebbero semplicemente lasciare che gli algoritmi funzionino e le macchine continuino a svolgere i compiti a cui sono più adatte, ma il contrario. Esseri umani e computer hanno competenze e punti di forza diversi. Questi sono più vantaggiosi se affiancati in una configurazione collaborativa. Le persone hanno bisogno di migliorare la comunicazione con le macchine, scoprendo cosa stanno facendo e perché, per costruire comprensione e fiducia nell’AI o nell’automazione. Solo allora sarà possibile lasciare che i computer eseguano ciò in cui emergono, facendo concentrare gli uomini sull’esperienza innovativa. L’intelligenza artificiale e l’intelligenza umana hanno entrambi i loro punti di forza e il loro posto nel mondo, e devono giocare la partita come collaboratori e non nemici. È necessario considerare questo ibrido come l’approccio fondamentale su cui far leva per guidare le tecnologie e risolvere i problemi dei clienti, fornendo un grande vantaggio competitivo per le aziende machine-enabled.

Il processo di identificazione delle opportunità, ovvero la valutazione dei flussi di dati e le conseguenti decisioni, non è cambiato. Esiste piuttosto la necessità di farlo in tempo reale, grazie a una serie sempre crescente di input provenienti da un insieme di canali che continueranno a crescere, portando un valore aggiunto inestimabile alle macchine. Mentre giochiamo con le nostre competenze, il successo ruota anche sulla compensazione delle nostre debolezze, ed è qui che la collaborazione con i computer ha già rimodellato il modo in cui la pubblicità digitale viene eseguita.

Il programmatic nella tua e-mail. Ricevi gratuitamente la nostra newsletter

Ti chiediamo il consenso per il trattamento dei dati personali diretto all’invio di newsletter editoriali, o altre informazioni di carattere informativo e promozionale riguardanti Programmatic Italia e Società Partner, in conformità con la nostra Privacy Policy.

Acconsento
Non acconsento

Ricevi anche la newsletter di Engage.it

Cliccando su Iscriviti, riceverai da Programmatic Italia una nostra newsletter bisettimanale e qualche mail promozionale ogni tanto. Potrai cambiare le tue impostazioni quando vuoi e non cederemo mai a terzi i tuoi dati.